应用介绍
近年来,大型语言模型(LLM)在自然语言处理领域取得了革命性进展。然而,其底层的 Transformer 架构在处理复杂推理任务时仍有不足。尽管「思维链」(CoT)提示技术提供了一条实用路径,但多数方法依赖通用指令,导致提示工程高度依赖反复试验,缺乏理论指导。
近年来,大型语言模型(LLM)在自然语言处理领域取得了革命性进展。然而,其底层的 Transformer 架构在处理复杂推理任务时仍有不足。尽管「思维链」(CoT)提示技术提供了一条实用路径,但多数方法依赖通用指令,导致提示工程高度依赖反复试验,缺乏理论指导。